搭建Kafka环境

FLink的使用的过程,需要使用到Kafka这个日志消息中间件,今天,我们来学习搭建环境。

什么是Kafka

Kafka 是一个分布式流式平台,它有三个关键能力

  1. 订阅发布记录流,它类似于企业中的消息队列企业消息传递系统
  2. 以容错的方式存储记录流
  3. 实时记录流

Kafka的应用

  1. 作为消息系统
  2. 作为存储系统
  3. 作为流处理器

Kafka 可以建立流数据管道,可靠性的在系统或应用之间获取数据;建立流式应用传输和响应数据。

Kafka 作为消息系统

Kafka 作为消息系统,它有三个基本组件

  • Producer : 发布消息的客户端

  • Broker:一个从生产者接受并存储消息的客户端

  • Consumer : 消费者从 Broker 中读取消息

在大型系统中,会需要和很多子系统做交互,也需要消息传递,在诸如此类系统中,你会找到源系统(消息发送方)和 目的系统(消息接收方)。为了在这样的消息系统中传输数据,你需要有合适的数据管道

这种数据的交互看起来就很混乱,如果我们使用消息传递系统,那么系统就会变得更加简单和整洁。

Kafka 运行在一个或多个数据中心的服务器上作为集群运行

  • Kafka 集群存储消息记录的目录被称为 topics
  • 每一条消息记录包含三个要素:键(key)、值(value)、时间戳(Timestamp)

核心 API

Kafka 有四个核心API,它们分别是

  • Producer API,它允许应用程序向一个或多个 topics 上发送消息记录
  • Consumer API,允许应用程序订阅一个或多个 topics 并处理为其生成的记录流
  • Streams API,它允许应用程序作为流处理器,从一个或多个主题中消费输入流并为其生成输出流,有效的将输入流转换为输出流。
  • Connector API,它允许构建和运行将 Kafka 主题连接到现有应用程序或数据系统的可用生产者和消费者。例如,关系数据库的连接器可能会捕获对表的所有更改

Kafka 基本概念

Kafka 作为一个高度可扩展可容错的消息系统,它有很多基本概念,下面就来认识一下这些 Kafka 专属的概念

topic

Topic 被称为主题,在 kafka 中,使用一个类别属性来划分消息的所属类,划分消息的这个类称为 topic。topic 相当于消息的分配标签,是一个逻辑概念。主题好比是数据库的表,或者文件系统中的文件夹。

partition

partition 译为分区,topic 中的消息被分割为一个或多个的 partition,它是一个物理概念,对应到系统上的就是一个或若干个目录,一个分区就是一个 提交日志。消息以追加的形式写入分区,先后以顺序的方式读取。

注意:由于一个主题包含无数个分区,因此无法保证在整个 topic 中有序,但是单个 Partition 分区可以保证有序。消息被迫加写入每个分区的尾部。Kafka 通过分区来实现数据冗余和伸缩性

分区可以分布在不同的服务器上,也就是说,一个主题可以跨越多个服务器,以此来提供比单个服务器更强大的性能。

segment

Segment 被译为段,将 Partition 进一步细分为若干个 segment,每个 segment 文件的大小相等。

broker

Kafka 集群包含一个或多个服务器,每个 Kafka 中服务器被称为 broker。broker 接收来自生产者的消息,为消息设置偏移量,并提交消息到磁盘保存。broker 为消费者提供服务,对读取分区的请求作出响应,返回已经提交到磁盘上的消息。

broker 是集群的组成部分,每个集群中都会有一个 broker 同时充当了 集群控制器(Leader)的角色,它是由集群中的活跃成员选举出来的。每个集群中的成员都有可能充当 Leader,Leader 负责管理工作,包括将分区分配给 broker 和监控 broker。集群中,一个分区从属于一个 Leader,但是一个分区可以分配给多个 broker(非Leader),这时候会发生分区复制。这种复制的机制为分区提供了消息冗余,如果一个 broker 失效,那么其他活跃用户会重新选举一个 Leader 接管。

producer

生产者,即消息的发布者,其会将某 topic 的消息发布到相应的 partition 中。生产者在默认情况下把消息均衡地分布到主题的所有分区上,而并不关心特定消息会被写到哪个分区。不过,在某些情况下,生产者会把消息直接写到指定的分区。

consumer

消费者,即消息的使用者,一个消费者可以消费多个 topic 的消息,对于某一个 topic 的消息,其只会消费同一个 partition 中的消息。

在了解完 Kafka 的基本概念之后,我们通过搭建 Kafka 集群来进一步深刻认识一下 Kafka。

确保安装环境

安装 Java 环境

在安装 Kafka 之前,先确保本机环境上是否有 Java 环境,使用 java -version 命令查看 Java 版本,推荐使用Jdk 1.8 。

安装 Zookeeper 环境

Kafka 的底层使用 Zookeeper 储存元数据,确保一致性,所以安装 Kafka 前需要先安装 Zookeeper,Kafka 的发行版自带了 Zookeeper ,可以直接使用脚本来启动,不过安装一个 Zookeeper 也不费劲。

ZK单机环境

Zookeeper 单机搭建比较简单,直接从 https://www.apache.org/dyn/closer.cgi/zookeeper/ 官网下载一个稳定版本的 Zookeeper ,这里我使用的是 3.6.2,下载完成后,在 自己系统中随便一个目录下创建 zookeeper 文件夹,将下载好的 zookeeper 压缩包放到该目录下。

如果下载的是一个 tar.gz 包的话,直接使用 tar -zxvf zookeeper-3.6.2.tar.gz解压即可

解压完成后,cd 到 目录/zookeeper/zookeeper-3.6.2,创建一个 data 文件夹,然后进入到 conf 文件夹下,使用mv zoo_sample.cfg zoo.cfg` 进行重命名操作

然后使用 vi 打开 zoo.cfg ,更改一下dataDir = 目录/zookeeper/zookeeper-3.6.2/data ,保存。

进入bin目录,启动服务输入命令./zkServer.sh start 输出下面内容表示搭建成功。

关闭服务输入命令,./zkServer.sh stop

使用 ./zkServer.sh status 可以查看状态信息。

ZK 集群搭建

准备条件

准备条件:需要三个服务器,这里我使用了CentOS7 并安装了三个虚拟机,并为各自的虚拟机分配了1GB的内存,在每个 /usr/local/ 下面新建 zookeeper 文件夹,把 zookeeper 的压缩包挪过来,解压,完成后会有 zookeeper-3.6.2 文件夹,进入到文件夹,新建两个文件夹,分别是 datalog文件夹。

设置集群

新建完成后,需要编辑 conf/zoo.cfg 文件,三个文件的内容如下

tickTime=2000
initLimit=10
syncLimit=5
dataDir=/usr/local/zookeeper/zookeeper-3.6.2/data
dataLogDir=/usr/local/zookeeper/zookeeper-3.6.2/log
clientPort=12181
server.1=192.168.1.7:12888:13888
server.2=192.168.1.8:12888:13888
server.3=192.168.1.9:12888:13888

server.1 中的这个 1 表示的是服务器的标识也可以是其他数字,表示这是第几号服务器,这个标识要和下面我们配置的 myid 的标识一致可以。

192.168.1.7:12888:13888 为集群中的 ip 地址,第一个端口表示的是 master 与 slave 之间的通信接口,默认是 2888,第二个端口是leader选举的端口,集群刚启动的时候选举或者leader挂掉之后进行新的选举的端口,默认是 3888

现在对上面的配置文件进行解释

tickTime: 这个时间是作为 Zookeeper 服务器之间或客户端与服务器之间维持心跳的时间间隔,也就是每个 tickTime 时间就会发送一个心跳。

initLimit:这个配置项是用来配置 Zookeeper 接受客户端(这里所说的客户端不是用户连接 Zookeeper 服务器的客户端,而是 Zookeeper 服务器集群中连接到 Leader 的 Follower 服务器)初始化连接时最长能忍受多少个心跳时间间隔数。当已经超过 5个心跳的时间(也就是 tickTime)长度后 Zookeeper 服务器还没有收到客户端的返回信息,那么表明这个客户端连接失败。总的时间长度就是 5*2000=10 秒

syncLimit: 这个配置项标识 Leader 与Follower 之间发送消息,请求和应答时间长度,最长不能超过多少个 tickTime 的时间长度,总的时间长度就是5*2000=10秒

dataDir: 快照日志的存储路径

dataLogDir: 事务日志的存储路径,如果不配置这个那么事务日志会默认存储到dataDir指定的目录,这样会严重影响zk的性能,当zk吞吐量较大的时候,产生的事务日志、快照日志太多

clientPort: 这个端口就是客户端连接 Zookeeper 服务器的端口,Zookeeper 会监听这个端口,接受客户端的访问请求。

创建 myid 文件

在了解完其配置文件后,现在来创建每个集群节点的 myid ,我们上面说过,这个 myid 就是 server.1 的这个 1 ,类似的,需要为集群中的每个服务都指定标识,使用 echo 命令进行创建

# server.1
echo "1" > /usr/local/zookeeper/zookeeper-3.6.2/data/myid
# server.2
echo "2" > /usr/local/zookeeper/zookeeper-3.6.2/data/myid
# server.3
echo "3" > /usr/local/zookeeper/zookeeper-3.6.2/data/myid
启动服务并测试

配置完成,为每个 zk 服务启动并测试,启动服务(每台都需要执行)

cd /usr/local/zookeeper/zookeeper-3.6.2/bin
./zkServer.sh start

检查服务状态

使用 ./zkServer.sh status 命令检查服务状态。


zk集群一般只有一个leader,多个follower,主一般是相应客户端的读写请求,而从主同步数据,当主挂掉之后就会从follower里投票选举一个leader出来。

Kafka 集群搭建

准备条件

/usr/local 下新建 kafka 文件夹,然后把下载完成的 tar.gz 包移到 /usr/local/kafka 目录下,使用 tar -zxvf 压缩包 进行解压,解压完成后,进入到 kafka_2.13-2.6.0 目录下,新建 log 文件夹,进入到 config 目录下。

我们可以看到有很多 properties 配置文件,这里主要关注 server.properties 这个文件即可。

kafka 启动方式有两种,一种是使用 kafka 自带的 zookeeper 配置文件来启动(可以按照官网来进行启动,并使用单个服务多个节点来模拟集群http://kafka.apache.org/quickstart#quickstart_multibroker),一种是通过使用独立的zk集群来启动,这里推荐使用第二种方式,使用 zk 集群来启动

修改配置项

需要为每个服务都修改一下配置项,也就是server.properties, 需要更新和添加的内容有

broker.id=0 //初始是0,每个 server 的broker.id 都应该设置为不一样的,就和 myid 一样 我的三个服务分别设置的是 1,2,3
log.dirs=/Users/liuzhuo/sofe/kafka/kafka_2.13-2.6.0/log

#在log.retention.hours=168 下面新增下面三项
message.max.byte=5242880
default.replication.factor=2
replica.fetch.max.bytes=5242880

#设置zookeeper的连接端口
zookeeper.connect=localhost:2181  #192.168.1.7:2181,192.168.1.8:2181,192.168.1.9:2181

配置项的含义

broker.id=0  #当前机器在集群中的唯一标识,和zookeeper的myid性质一样
port=9092 #当前kafka对外提供服务的端口默认是9092
num.network.threads=3 #这个是borker进行网络处理的线程数
num.io.threads=8 #这个是borker进行I/O处理的线程数
log.dirs=/Users/liuzhuo/sofe/kafka/kafka_2.13-2.6.0/log #消息存放的目录,这个目录可以配置为“,”逗号分割的表达式,上面的num.io.threads要大于这个目录的个数这个目录,如果配置多个目录,新创建的topic他把消息持久化的地方是,当前以逗号分割的目录中,那个分区数最少就放那一个
socket.send.buffer.bytes=102400 #发送缓冲区buffer大小,数据不是一下子就发送的,先回存储到缓冲区了到达一定的大小后在发送,能提高性能
socket.receive.buffer.bytes=102400 #kafka接收缓冲区大小,当数据到达一定大小后在序列化到磁盘
socket.request.max.bytes=104857600 #这个参数是向kafka请求消息或者向kafka发送消息的请请求的最大数,这个值不能超过java的堆栈大小
num.partitions=1 #默认的分区数,一个topic默认1个分区数
log.retention.hours=168 #默认消息的最大持久化时间,168小时,7天
message.max.byte=5242880  #消息保存的最大值5M
default.replication.factor=2  #kafka保存消息的副本数,如果一个副本失效了,另一个还可以继续提供服务
replica.fetch.max.bytes=5242880  #取消息的最大直接数
log.segment.bytes=1073741824 #这个参数是:因为kafka的消息是以追加的形式落地到文件,当超过这个值的时候,kafka会新起一个文件
log.retention.check.interval.ms=300000 #每隔300000毫秒去检查上面配置的log失效时间(log.retention.hours=168 ),到目录查看是否有过期的消息如果有,删除
log.cleaner.enable=false #是否启用log压缩,一般不用启用,启用的话可以提高性能
zookeeper.connect=localhost:2181  #192.168.1.7:2181,192.168.1.8:2181,192.168.1.9:2181 #设置zookeeper的连接端口

启动 Kafka 集群并测试

启动服务

进入到 /Users/liuzhuo/sofe/kafka/kafka_2.13-2.6.0//bin 目录下

# 启动后台进程
./kafka-server-start.sh ../config/server.properties

PS:说明,我本地的zk没有启动起来,因此,我们需要首先把zk启动起来。

检查服务是否启动
# 执行命令 jps
liuzhuoMacBook-Pro:kafka_2.13-2.6.0 liuzhuo$ jps
29526 Launcher
278
73895 Jps
72968 QuorumPeerMain
73336 Kafka

kafka后台运行:

./kafka-server-start.sh -daemon ../config/server.properties
创建 Topic
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic gakki

对上面的解释:

--replication-factor 1   复制1份

--partitions 1 创建1个分区

--topic 创建主题
查看我们的主题是否出创建成功
./bin/kafka-topics.sh --list --zookeeper localhost:2181

在一台机器上创建一个发布者
# 创建一个broker,发布者
./kafka-console-producer.sh --broker-list localhost:9092 --topic gakki

在一台服务器上创建一个订阅者
# 创建一个consumer, 消费者
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic gakki --from-beginning

测试结果

发布消息:

消费数据:

其他命令

显示 topic

bin/kafka-topics.sh --list --zookeeper localhost:2181

# 显示
gakki
查看 topic 状态
bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic gakki

# 下面是显示的详细信息
Topic: gakki    PartitionCount: 1    ReplicationFactor: 1    Configs:
Topic: gakki    Partition: 0    Leader: 0    Replicas: 0    Isr: 0

# 分区为为1  复制因子为1   主题 gakki 的分区为0 
# Replicas: 0   复制的为0

Leader 负责给定分区的所有读取和写入的节点,每个节点都会通过随机选择成为 leader。

Replicas 是为该分区复制日志的节点列表,无论它们是 Leader 还是当前处于活动状态。

Isr 是同步副本的集合。它是副本列表的子集,当前仍处于活动状态并追随Leader。

至此,kafka 集群搭建完毕。


  转载请注明: 解忧杂货店 搭建Kafka环境

  目录